
9 aa

AD-A275 951 Tsubs=,=,52.1()
l~flhI~iEIICDRL sequence 05504-001

31 July 1993

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE

SYSTEMS (STARS) PROGRAM

Cleanroom Engineering Handbook
Volume 6

Certification Team Practices

Contract No. F19628-88-D-0032

Task ID52 - STARS Technology Transfer Demonstration

Project for the U.S. Army

DTIC
ELECTE
,B 181994 Prepared for:

I Electronic Systems Center

... : ,Air Force Materiel Command, USAF

Hanscom AFB, MA 01731-2816

Prepared by:

IBM Federal Systems Company ! -"

94-05360 800 North Frederick Avenue

Ii~I ~ll i~illlll II ll~ l o°Gaithersburg, MD 20879

Approved for Public Release, Distribution Is Unlimited

94 2 17 082

Best
Available

Copy

Task/Subtask ID52.1(2)

CDRL Sequence 05504-001
31 July 1993

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE

SYSTEMS (STARS) PROGRAM

Cleanroom Engineering Handbook
Volume 6

Certification Team Practices

Contract No. F19628-88-P-0032

Task ID52 - STARS Technology Transfer Demonstration

Project for the U.S. Army

cceicr. For

NTIS CFpýXI
DT.C 1ASJ

Prepared for:

Electronc Syste s CenteElectronic Systems Center By c

Air Force Materiel Command, USAF D_...-tc", y

Hanscom AFB, MA 01731-2816 Aiaiity 'Xis
Avewl :Id !or

Prepared by: I

IBM Federal Systems Company

800 North Frederick Avenue

Gaithersburg, MD 20879

REPORT DOCUMENTATION PAGo I

1. AGENCY USE ONLY (Leave WJank) 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED

17/31/93 1 Initial

4. TITLE AND SUBTITLE S FUNDING I.UM8ERS

Cleanroom Engineering Handbook:

Certification Team Practices F19628-bb-C-0U32/0010

6. AUTHOR(S)

Ara Kouchakdjian Alan R. Hevner
Richard H. Cobb James A. Whittaker

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) S. PERFORMING ORGANIZATION

REPORT NUMBER

IBM Federal Systems Company SET, Inc.

800 North Frederick Avenue 2770 Indian River Blvd. 05504-001
Gaithersburg, MD 20879 Vero Beach, FL 32960

Volume 6

9. SPONSORING:MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING! MONITORING

AGENCY REPORT NUMSER

Electronic Systems Center/ENS

Air Force Materiel Command, USAF
5 Eglin Street, Building 1704
Hanscom Air Force Base, MA 01731-2116

11. SUPPLEMENTARY NOTES

N/A

12a. OISTRIBUTION I AVAILABILITY STATEMENT 12b- DISTRIBUTION CODE

Cleared for Public Release, Distribution is Unlimited

13. ABSTRACT (Max•rmum 200 words)
This is one of a series of six engineering handbooks prepared for and used by the engineering staff at
Picatinny Arsenal for the STARS technology transfer demonstration. The handbooks define the engineering
process and algorithms that will be used in Cleanroom projects. They are designed to provide support to
trained engineers using Cleanroom Engineering, not to substitute for training.

The Cleanroom process model for software system development projects is presented in Volume I - Cleanroom
Process Overview - of this series of Cleanroom Process Manuals. This handbook, Volume 6, describes the
activities of Cleanroom softfware certification for each increment/accumulation of project development.
Process P5.j.2, Preparation for Certification of Accumulation j and process P6.j, Software Certification
for Accumulation j, are expanded into engineering subprocesses (i.e., tasks) for execution by Cleanroom-
trained software engineers. These tasks result in the preparation for and performance of the certification
of developed software.

The reader of this volume should be familiar with the information and terms described in Volume 4 -
Specification Team Practices. This handbook, Volume 6, builds on the theory involving software usage
modeling which is introduced in Volume 4.

14 SUBJECT TERMS 15 NPJMBFR OF PAGFS

Certification, Cleanroom, Cleanroom Engineering, Development, 54
Management, Software Development, Specification .6 PRICE CODE

N /A
17. SECURITY CLASSIFICATION 18. SECURITY CI t(<IIICATION 19 SC(CiL'Ty C'ASSi~iCATION 20 LIMITATION Or -BSTKA-7

OF REPORT! OF THIS PAGt• O1 AB.ST;-CT.

U n c l a s s i f i e d U n c I a - % . - . S : c . • : , : • ,F

PREFACE

This series of handbooks is prepared for use by managers and engineers assigned to
Cleanroom projects at Picatinny Life Cycle Software Engineering Center.

These handbooks define the engineering process and algorithms that will be used in
Cleanroom projects.

This document was developed by the IBM l:cdcr:d Systems Company, located at 800 North
Frederick Avenue, Gaithcrsburg, .MI) 20870 and Software ["ngmcering lcchnology, Inc. located
at 2770 Indian River Boulevard, Vcro Beach, 1:1, 32t•60. Qucations or comments should be
directed to Y, lr. Paul .+Mnold at 301-240-7464 {.intemct: pga•ei.cmu.edu).

This document is approved for release under Distribution "C" of the Scientflic and Technical
Information Progam Classification Scheme (DoD l)irective 5230.24). Permission to use, modil•°,
copy or comment on this document for purposes stated undcr Distribution "C" without tee is is
hereby •anted. The Government (HIM and its subcontractors) disclaims all responsibility a,_,amst
liability, including expenses lor violation of proprietary." rights, or copyrights arising out use of this
document. In addition, the Governmcnt (IBM and its subcontractors) disclaims all warranties \vith
regard to this document. In no event shall the Government (IBM nor its subcontractors) be liable
for an)" damages in connection with the use of this document.

CERTIFICATION TEAM PRACTICES

TABLE OF CONTENTS

Page
Section 1: Introduction 2

1.1 Background and Motivation 2
1.2 Cleanroom Process Manual Mission 3
1.3 Cleanroom Certification Process Models - P5.j.2, P6.j 3

Section 2: Develop and Analyze Markov Usage Model Tasks 6
2.1 Usage Profile 6
2.2 Determine Usage States 7
2.3 Determine Transition Possibilities and Transition Stimuli 10
2.4 Determine User Classes 10
2.5 Determine Transition Probabilities 11
2.6 Analyze Usage Models 15
2.7 Document Model(s) In Specifications 19
2.8 Usage Profiles for Increments 20

Section 3: Prepare for Certification of Accumulation j Tasks 21
3.1 Tailor Usage Profile to Accumulation j 22
3.2 Prepare Test Plan 23
3.3 Prepare Test Scenarios or Test Scenario Generator for Accumulation j 27
3.4 Determine Expected Test Results 29
3.5 Increase Understanding of Problem and Solution Domains 30

Section 4: Software Certification for Accumulation j Tasks 31
4.1 Build Accumulation j 32
4.2 Perform Certification Tests for Accumulation j 32
4.3 Prepare Failure Reports 34
4.4 Prepare Certification Report(s) 35

ID52 - Vol. 6 - Certification Team Practices Page 1

CERTIFICATION TEAM PRACTICES

SECTION 1: INTRODUCTION

The Cleanroom process model for software system development projects is presented in Volume
1 - Cleanroom Process Overview of this series of Cleanroom Process Manuals. This manual,
Volume 6, describes the activities of Cleanroom software certification for each
increment/accumulation of project development. Process P5.j.2, Preparation for Certification of
Accumulation j and process P6.j, Software Certification for Accumulation j, are expanded into
engineering subprocesses (i.e., tasks) for execution by Cleanroom-trained software engineers.
These tasks result in the preparation for and performance of the certification of developed
software.

The reader of this volume should be familiar with the information and terms described in Volume
4 - Cleanroom Software Specification. This volume builds on the theory involving software
usage modeling which is introduced in volume 4.

1.1 Background and Motivation

Cleanroom software certification focuses on the principle of Statistical Quality Control (SQC).
The goal of SQC is to control and improve product quality by a statistical assessment of the
process that creates the product. Software testing using SQC allows the projection of the level
of correctness that a product will exhibit from testing with only a sample of the total usage of
the product. This is a paradigm shift from typical software testing approaches. Traditional
software testing attempts to find as many faults as possible before the product is shipped to the
customer. The more traditional structural or functional testing approaches can only base their
expectation of field behavior of the product on the observation, or lack of observation, of failures
from a non-statistical suite of test scenarios. SQC-based software testing allows the inference of
the quality observed in the testing environment to the expected quality in the operational
environment because testing is conducted from the users' point of view.

Cleanroom follows a notion of SQC similar to that found in the manufacturing industry.
Deming's ideas of SQC for manufacturing, conceived in the 1950's, are concerned with imperfect
manufacturing of a product in which the statistics are gathered by measuring the quality of a
sample of the actual product (each sample item is used once to determine whether or not it
works). Mills applied and extended Deming's ideas to software in the 1980's. Mills focuses the
concern for software on an imperfect design process in which the statistics are measured from
sample uses of a single product (i.e., the software). This makes possible a statistical certification
of software based on an operational profile of software usage.

The fact that most software has very large numbers of possible inputs and outputs means that it
cannot be exhaustively tested. As a result, any testing approach will exercise only a small portion
of the total input domain and output range. Thus the challenge is to find a subset (sample) of
inputs that maximize the net gain of testing the software.

ID52 - Vol. 6 - Certification Team Practices Page 2

Mills argues that statistical testing, in which tests are randomly genera'ed based on a probability
distribution that simulates anticipated field usage, is the best strategy for two reasons.

First, since the test cases represent real usage, statistical testing tends to uncover errors
in the order of their contribution to the mean time to failure (MTTF) of the software.
Thus, as failures are removed, the largest possible gain in the MTTF is achieved.
Furthermore, any failure likely to be encountered by users is likely to be discovered
during the statistical test. If failures remain in the software after a statistical test, they
tend to be low probability failures.

Second, the random nature of the test allows the use of rigorous statistical techniques to
measure the user-perceived quality of the software. Introducing SQC to software testing
allows the testing process to become a process of scientific software certification instead
of a seemingly endless cycle of finding and removing failures. In fact, ordinary testing
and debugging is an endless cycle indeed because fifteen per cent of the fixes lead to new
failures, even with the best of programmers with the best of intentions. This is hard to
believe, but it is true! As a result, typical large systems never go to zero failures, but
stabilize at a higher level. It is frustrating, but true, that new failures arise, whether the
original programmers or new programmers do the fixing. Some failures are due to
misconceptions of the original programmers, who imagine a different specification or a
different utility than might exist. Some failures are due to new programmers, who
imagine a different program design than might exist.

1.2 Cleanroom Process Manual Mission

The mission of this process manual for Cleanroom software certification is to organize and
explain the set of specific tasks performed by the Cleanroom Certification Team for each
accumulation of a project. Certification tasks are described and the relationships among the tasks
are defined. The Cleanroom Certification Team shall create the test plan, test scenarios, and
expected execution results for an accumulation. Additionally the Certification Team shall certify
the correctness of the accumulation by executing the test scenarios in the manner defined by the
test plan, and comparing the actual results to the expected results to determine correctness.
Templates are presented as recommended formats for the presentation of information and task
results.

1.3 Cleanroom Certification Process Models - P5.j.2, P6.j

The incremental development of the Cleanroom process mandates that the software also be
certified an increment at a time. This makes the certification process more manageable and
allows the certification and development tasks to proceed in parallel. Additionally, the code for
each prior increment is included in the certification of later increments; making the certification
for the early increments more thorough. This incremental development allows an iterative
assessment of the quality of the code as well as the process that created the code.

ID52 - Vol. 6 - Certification Team Practices Page 3

The certification results of each increment are independent from the prior increments'
certification. None of the data for previous increments is included in the certification of the
current increment. However, since the code is included, the final certification (i.e., for the
released product) includes pertinent information from each increment by default. The results of
the certification of early increments (i.e., those not released to customers) are intended to give
feedback to project management about the quality of the process, to developers about the quality
of the code, and to certifiers about the effectiveness of the usage model.

As described in Volume 1 of the Cleanroom Process Manuals, Cleanroom system and software
development can be described in a detailed process model. A complete development project for
a system can be divided into accumulations for certification preparation. The engineering task
for the preparation for the certification of accumulation j is labeled P5.j.2, Prepare for
Certification of Accumulation j. The detailed process model for P5.j.2 is:

proc P5.j.2: Prepare for Certification of Accumulation j
[This process results in test plan and test scenarios for accumulation j]
[P5.j.2: Prepare for Certification of Accumulation j]
con

do
do

C5.j.2. 1: Prepare test plan;
until

Completion Conditions for C5.j.2.1 achieved
od;
do

con
C5.j.2.2: Prepare test scenarios or test scenario generator for accumulation j;
C5.j.2.3: Determine expected results for test scenarios;

noc;
until

Completiui, Conditions for C5.j.2.2 and C5.j.2.3 achieved
od;

od;
C5.j.2.5: Increase Understanding of Problem and Solution Domains;

noc;
corp;

Process P5.j.2, and its component tasks, will be described in detail in section 2 of this document.

As described in Volume 1 of the Cleanroom Process Manuals, Cleanroom system and software
development can be described in a detailed process model. A complete development project for
a software system can be divided into accumulations for certification. The engineering task for
the actual certification of accumulation j is labeled P6.j, Software Certification for Accumulation
j. The detailed process model for P6.j is:

ID52 - Vol. 6 - Certification Team Practices Page 4

proc P6.j: Software Certification for Increment j
[P6.j certifies the code, and makes the decision as to whether an increment will be accepted
or rejected.]
do [P6.j: Software Certification for Increment j]

C6.j. 1: Build Accumulation j;
if no pre-certification failures
then

while
certification plan requires more tests and sufficient failures have not been observed
to make it desirable to terminate testing and wait for corrections

do
C6.j.2: Perform Certification Tests for Accumulation j;

od;
1i;

if at least one failure observed and observed failures are considered to be correctable
then

C6.j.3: Prepare failure report(s);
D6.j.4: Correct failure, verify correction and prepare ECN;

fi;

M6.j.5: Management Decision: (1) certification complete-accumulation quality satisfactory,
(2) certification complete-quality not satisfactory-replanning Is required or (3)
certification should continue;

if not Management Decision is certification should continue
then

C6.j.6: Prepare Certification Report;
1i;

until
Completion Conditions achieved for C6.j.6

od;
corp;

Process P6.j, and its subtasks, will be described in detail in section 3 of this document.

ID52 - Vol. 6 - Certification Team Practices Page 5

CERT[FICATION TEAM PRACTICES

SECTIO',N 2: DEVELOP AND ANALYZE MARKOV USAGE MODEL TASKS

The material in this section directly supports the work of the Specification Team in the
preparation of the Volume V of the specifications. The engineering task to Develop and Analyze
the Markov Usage Model is S4.i.2.7 and the engineering task to prepare Volume V of the
specification is S4.i.4.5 Record Cycle i Results in Usage Profile Volume. This material is being
discussed in this volume because of the logical connection preparing the usage profile and then
using the profile to support the software certification.

Engineering task S4.i.2.7 can be decomposed into finer engineering tasks as follows:

proc S4.i.2.7: Develop and Analyze Markov Usage Model
do [$4.i.2.7: Develop and Analyze Markov Usage Model]

con

S4.i.2.7.1: Determine Usage States;
S4.i.2.7.2: Determine Transition Possibilities and Transition Stimuli;
S4.i.2.7.3: Determine User Classes That Need To Be Modeled;
for each class of user to be modeled
do

$4.i.2.7.4: Determine Transition Probabilities;
S4.1.2.7.5: Analyze Usage Model;

od;
$4.i.2.7.6: Document Model(s) In Specification Volume V;

noc;
until

usage model(s) and specification volume are complete
od;

corp;

Engineering practices for performing each of these engineering tasks are discussed in the in this
section. The result of this work is documented in volume 5 of the Specification.

2.1 Usage Profile

A usage profile for a software system or any accumulation of a Cleanroom project is an external
description of software interaction with users. Users are any human, program, device, etc. that
can apply stimuli to the software. A usage profile is defined by a Markov model consisting of
a set of states which represent the operational states (called the usage state) of the software and
a set of arcs labeled with external stimuli which cause state transitions. Associated with each
state is a stimulus distribution that simulates the application of stimuli from that state by a
particular user. A usage profile defined in this manner is a formal mathematical system; namely,

ID52 - Vol. 6 - Certification Team Practices Page 6

a discrete parameter Markov chain. This usage Markov chain is a source for analysis that lends
insight into important usage characteristics of the software.

The objective of this section is to specify engineering practices that are helpful in developing a
usage profile model. Usage models can be specified in either a graphical form or a table. A
tabular form is specified in Table 2.1.1.

Table 2.1.1 Tabular Format For Usage Model for One Class Of User

From State Transition Stimuli To State Transition Probability

Graphical displays are useful for studying some aspects of the model during its preparation or
to help explain the model. A typical graphical display would be a state transition diagram as
shown in Figure 2.3.1 (this figure is explain in detail later) with the addition of arc labels to
define transition probabilities.

A certification tool called the Certification Assistant (CA) has been developed by SET, Inc. which
processes the above tabular format and automates much of the analysis described in this process
manual. Aspects of the tool are described in various sections of this volume.

2.2 Determine Usage States (S4.i.2.7.1)

As the software operates, it moves from one operational state to another operational state. The
first step in developing a usage profile is to specify all the operational states. This list of states
can be developed by an examination of Specification volumes 11 and III. Operational states have
nothing to do with actual implementation. These are the states defined by the understanding of
the problem and solution domains of the system to be implemented.

Consider the simple selection menu pictured in Figure 2.2.1. The input domain and simplified
transition rules appear in Table 2.2.1. The first menu item, Project Manager, is used to define
a project (the semantics are not described here for simplicity). The project name then appears
in the upper right comer of the screen. Once a project is defined the next three items, Network
Definition, Reliability Information, and Certification Model can be selected to perform their
respective functions (also not described). If no project is defined, these items cannot be selected.

ID52 - Vol. 6 - Certification Team Practices Page 7

Figure 2.2.1: An Example Screen Layout

OeammCom ntatb •We
Clwi~ Re~anf -a=

Netwok dinitio

iflcation Modem
Exit System

Arrow Keys to Move Cwur Enter to Select

Table 2.2.1 - A Simplified Specification for the Example Menu

Stimulus Condition Response

Invoke Display menu with "Project
Manager"

Invoke filename is not a valid p menu with "Project
w/filename project Manager"

highlighted

filename is a valid project Display menu with "Project
Manager"
highlighted and filename appearing
in the Current Project box

Up Arrow key "Project Manager" Move highlight bar to "Exit System"
(T) highlighted

Move highlight bar up one line
otherwise

Down Arrow "Exit System" highlighted Move highlight bar to "Project
key Manager"

otherwise Move highlight bar down one line

ID52 - Vol. 6 - Certification Team Practices Page 8

Stimulus Condition Response

Enter key "Project Manager" Display the Project Manager screen
(J) highlighted

Terminate the software
"Exit System" highlighted

null
highlight bar on any other
option and no active project

Display the appropriate screen
highlight bar on any other
option and a project is
active

Any other key I null

Determining the usage states for the software requires creation and design similar to
creating a state box from a black box. There is no algorithm that can accomplish this
task; however, one must keep in mind that usage states are determined from a users'
point of view. Examples of common usage states for applications software are: cursor
location, window configuration, and data file attributes. For real-time software,
common usage states are: bus or device phase, buffer contents, instrum, nt or sensor
readings, exception conditions, and timing considerations.

For this example, usage states are defined to be those attributes of the software
affecting the application of stimuli by the user. In this example, the state is (i) the
current screen (menu=S 1, project manager=S2, network definition=S3, reliability
information=S4, and certification model=S5) , (ii) the location of the highlighted bar
(which for screen 1 is: project manager=Ll, network definition=L2, reliability
information=L3, certification model=L4, and exit system=L5), and (iii) whether or not
a project is active (Yes or No). Thus a usage state appears as a triple; for example,
(S1,L3,Yes) is an element of the usage state set.

Invocation of the software can occur with either no filename supplied, an illegal
filename, or a legal filename. In the case of the first two, the usage state becomes
(Sl,L1,No), i.e., the first screen is displayed, the highlight is on option 1, and no
project is currently active. In the case of invocation with a legal filename, the usage
state is (Sl,L1,Yes). From each of these new states, all possible stimuli must be
considered. These stimuli are: the arrow keys, which change the location of the
highlight bar, and the enter key, which either causes a null response when no project
is active or a screen change when a project is active.

This information is recorded in Section 1 of Volume V of the specification.

ID52 - Vol. 6 - Certification Team Practices Page 9

2.3 Determine Transition Possibilities and Transition Stimuli (S4.i.2.7.2)

In order to describe the transitions between system states, it is necessary to understand the nature
of the stimuli to the system. The potential stimuli for each state need to be listed.

The usage states and stimuli can be organized as the expected usage profile. The format of a
usage profile is a state transition diagram (STD). The STD) is organized by connecting usage
states with directed arcs, labeled with appropriate stimuli (and their probability), which cause the
state transitions. Alternatively, a transition matrix is an equivalent representation using the states
as indices and the transitions (stimuli) as the matrix entries.

Figure 2.3.1: An Example State Transition Diagram

4-A-

The complete transition diagram for this example appears in Figure 2.3.1. Note that the "any
other key" stimulus could be included by installing an arc from each state to itself labeled
appropriately. As with all aspects of Cleanroom, the transition diagram can be represented in
either a graphical (STh) or a tabular (text) format.

2.4 Determine User Classes (S4.i.2.7.3)

Certification requirements typically include multiple user types that are foreseen as potential end-
users. Each distinct class of user should be listed. Additionally, some applications have distinct
modes or usage. For example, a software system may have an installation mode and a mode of
normal operation. Each such mode should also be listed.

1D52 - Vol. 6- Certification Team Practices Page 10

Each user class and set of requirements may necessitate the definition of a stratum of use. A
stratum is a subset of the usage profile that describes a particular user type or satisfies a
requirement or set of requirements. For each stratum, several questions must be answered. First,
where will the randomization will occur in the stratum. Randomization can be in either the
control flow, the data items, or (preferably) both. Second, statistical aspects of the stratum must
be determined through analysis. The analysis will describe pertinent statistical properties of the
stratum including, expected number of stimuli/states in a scenario and the expected makeup of
each scenario. Third, for each stratum, the mapping back to user classes and requirements must
be made explicit. The purpose of each stratum and the reason for including it in the certification
needs to be clear.

Each stratum will have an associated usage profile.

2.5 Determine Transition Probabilities (S4.i.2.7.4)

The usage profile is a mechanism that is capable of randomizing both the control flow through
the software as well as the data that is input to the software. For example, if the user can enter
an alphanumeric string then the usage profile should allow for all possible combinations of
alphanumeric characters that comprise such a string, i.e., a string of random length with random
values. Thus the stimuli distributions of the usage model take the form of either a single symbol
of alphanumeric data or a series of symbols. Of course the sensible values must be given a
higher probability weight than the totally random ones. The goal is to randomize every aspect
of use (control flow and data) but the cost of doing this may be too great in some instances. If
it is determined that it is too costly to randomize all the data, certifiers can either sample from
actual data or pre-generate random data. States and arcs are installed in the model to instruct the
certifier to select from this pre-generated data when it is needed.

Transition probabilities can be established in three different ways.

1. If actual user sequences are available from a prior version or prototype of the software, stimuli
transitions in these sequences can be counted to obtain relative frequency estimates of the
transition probabilities. This is the most desirable method of establishing transition
probabilities.

The transition probabilities are established by counting corresponding stimuli in the user
sequences and converting these to probabilities (dividing each frequency by the sum of the
frequencies of all arcs that leave a given state). One must take care to obtain sequences that
are structurally complete, i.e., each transition defined in the chain appears in the user
sequences. If structurally complete sequences are not available, a good practice is to initialize
each frequency count to 1 before counting the frequencies in the sequences.

ID52 - Vol. 6 - Certification Team Practices Page 11

2. One can use hypothesized sequences of use to determine relative frequency probabilities if
there is some knowledge of intended (or even sensible) use. In the absence of explicit usage
information, this is often the best way to obtain the transition probabilities.

Note that the issue of structural completeness must be resolved in the case of hypothesized
sequences as well.

Hypothesizing sequences of use requires that the software engineers place themselves in the
role of the user and construct sequences of use (assuming that the user will use the system in
a careful and reasonable manner) to perform each black box subfunction. For example, the
menu example used above has five options from which the user can choose, thus, sequences
that describe all the "sensible" ways of executing each option can be constructed. These
sequences are listed below.

To select the PROJECT MANAGER option,

(i) Invoke w/o file, Enter
(ii) Invoke w/ illegal file, Enter

To select the NETWORK DEFINITION option

(iii) Invoke w/ file, Dn Arrow, Enter

To select the RELIABILITY INFORMATION option

(iv) Invoke w/ file, Dn Arrow, Dn Arrow, Enter

To select the CERTIFICATION MODEL option

(v) Invoke w/ file, Dn Arrow, Dn Arrow, Dn Arrow, Enter
(vi) Invoke w/ file, Up Arrow Up Arrow, Enter

To select the EXIT SYSTEM option

(vii) Invoke w/ file, Dn Arrow, Dn Arrow, Dn Arrow, Dn Arrow, Enter
(viii) Invoke w/ file, Up Arrow, Enter

The frequency counts (and, therefore, probabilities) can be tabulated using the format of Table
2.1.1 as follows. Each arc is assigned an initial frequency of 1. Now each of the above
sequences are used to increment the frequency count on the corresponding arc to obtain
informed probabilities. Table 2.5.1 lists each frequency and probability obtained in this
manner.

ID52 - Vol. 6 - Certification Team Practices Page 12

Table 2.5.1 Obtaining Informed Probabilities From Hypothesized Sequences

From State Transition Stimuli To State Transition Probability

Uninvoked invoke w/o filename or {S1,L1,No} 3/10
{-,-,-} invoke w/invalid f'le

invoke w/valid file {S1,L1,Yes} 7/10

IS1,Ll,No} IS1,L2,No} 1/5

I {S1,L5,No) 1/5

4 {S2,L1,No} 3/5

{S 1,L2,No} I S 1,L3,No} 1/3

1" {S1,L1,No} 1/3

J S 1,L2,No } 1/3

{S1,L3,No) I {S1,L4,No} 1/3

T tS1,L2,No} 1/3

S{S 1,L3,No} 1/3

1 S 1,L4,No} . { S1,L5,No} 1/3

I {S1,L3,No} 1/3

4 S 1,L4,NoI 1/3

{ S 1,L5,No)} I {S1,L1,No} 1/3

T {S1,LA,No) 1/3

4 Terminated 1/3

{S1,L1,Yes) t {S 1,L2,Yes) 5/9

" {S1,L5,Yes) 3/9

4 {S2,L1,Yesl 1/9

ID52 - Vol. 6 - Certification Team Practices Page 13

From State Transition Stimuli To State Transition Probability

S 1,L2,Yes) I- S 1,L3,Yes I 4/7

1 IS1,Ll,Yes} 1/7

4 { S 1,L2,Yes) 2/7

S 1,L3,Yes) I f S 1,4,Yes} 3/6

T I S 1,L2,Yes) 1/6

J (Sl,L3,Yesl 2/6

f S 1,L4,Yes) , {ISl,L5,Yes) 2/6

1 S 1,L3,Yes I 1/6

4 {SI,L4,Yes) 3/6

{S 1,L5,Yes} I- (S1,L1,No} 1/6

1" {S 1,A,No 1 2/6

J Terminated 3/6

{S2,L1,No} null {S1,L1,No} 1

{S2,L 1,Yes null IS1,L1,Yes) 1

S3 null {S 1,L2,Yes) 1

S4 null (S 1,L3,Yes) 1

S5 null {S1,L4,Y"s} 1

Terminated null Uninvoked I

3. In the absence of any information whatsoever, a "maximum uncertainty" estimate can be used
by assigning a uniform probability distribution across the exit arcs at each state. Despite the
fact that this is a completely uninformed method of assigning transition probabilities, it can
result in an effective statistical test. Often, the analytical results, discussed in the next section,
give insight into minor adjustments that increase the usefulness of the model.

The first two approaches lead to informed probabilities. The first approach will generate the most
accurate estimate of probabilities but in many case the cost may be judged to be greater than the

ID52 - Vol. 6 - Certification Team Practices Page 14

benefit or the alternative systems are not available. The second approach can always be used.

The third approach leads to uninformed probabilities.

2.6 Analyze Usage Models (S4.i.2.7.5)

A complete usage Markov chain is a formal and mathematical system and is therefore subject to
comprehensive statistical analysis. The analysis is aimed at answering question such as:

"* How long will it take a user to supply each stimulus?
"* With what distribution are the stimuli being supplied by the users?
"* With what distribution are the sequences being supplied by the users?
"* Which parts of the system will see the most use?
"* If the transition probabilities are changed, what is the net effect on system usage?

The analysis takes the form of defining random variables that describe software usage and then
deriving their expectation and standard deviation directly from the Markov chain. The following
is a list of random variables which have been identified, derived, and interpreted and are available
for immediate incorporation into any usage modeling application.

"* the number of steps until a given stimulus appears
"* the number of steps until all stimuli appear
"* the probability with which each stimulus appears over time
"* the number of steps until a stimulus recurs (appears again)
"* the number of appearances of a stimulus in a single user session
"* the number of user sessions between appearances of a given stimulus
"* the probability that a given stimulus appears in a session
"* the number of sessions until a given stimulus appears
"* the number of sessions until all stimuli appear
"* the probability that a given session will occur

A sample of analytical results for the example menu appear in Table 2.6.1 using the hypothesized
data for stimulus distributions and in Table 2.6.2 using uninformed probabilities. These results
are computed automatically by SETs CA software. The CA tool takes as input the tabular format
of the usage profile and creates usage statistics reports which are helpful in obtaining accurate
usage representation and in optimizing the effectiveness of the statistical test.

The analytical results allow engineers to discover the properties and capabilities of the usage
model that are not obvious from the model itself. The best example of this is the expected time
until all the stimuli appear. This is in no way obvious by looking at the model, but it is a very
important measure for developers in determining which stimuli appear more often than others and
for certifiers when they are attempting to determine an expected test budget.

ID52 - Vol. 6 - Certification Team Practices Page 15

The Specification Team must determine whether or not these results match any known usage
information or intuition. If so, then the usage profile developed is a suitable starting point for
the Certification 'Team. If not, then either structural (states and arcs) changes or statistical
(transition probabilities) changes must be made and the results recomputed and analyzed to
determine whether a more appropriate profile has been achieved. In other words, the construction
of the usage model and the estimation of its parameters is an iterative process that involves
several cycles of estimation and analysis before an appropriate model is obtained.

If changes to the model are necessary, the analytical results are used to indicate where the
adjustments can most effectively be made. For example, if a stimulus has too low a probability,
one should adjust the transition probabilities corresponding to the arcs on which the stimulus
appears and/or the arcs leading to the stimulus from the invocation state.

Tl•hlp 7 &/ I . An~sytelrs1 Reoiltc fnr thp Il 2Dap Ch2in with InfnrmPdr Pý-nhqhieltiep

The expected use length: 21.7 stimuli
The expected number of uses until each state is visited: 8.43
The expected number of uses until each arc is traversed: 16.67

A: The expected number of state transitions until each state occurs from Uninvoked
(and standard deviation)

B: The probability that a state occurs between Uninvoked and Terminated
C: The expected number of occurrences of a state between Uninvoked and Terminated

(and standard deviation)
D: The steady state probability of each state
E: The expected time until a state recurs

(and standard deviation)

State A B C DE

(screeinefilename)

Uninvoked 22.73 1.0 1.0 0.044010 22.73
{-,-,-} (21.28) (0) (22.01)

SI,LI1,No) 44.74 0.3 2.7 0.118827 8.42
(57.38) (6.21) (7.96)

IS1,L2,No} 71.14 0.22 1.44 0.063375 15.80
(77.78) (3.94) (15.45)

SS1,L3,NoJ 87.02 0.19 1.26 0.055453 18.05
(89.90) (3.71) .)(17.61)

1 S 1.L.No 1 85.61 0.2 1.08 0.047531 21.05
(86.71) (3.07) (19.87)

{ S 1,L5,No 1 54.74 0.3 0.9 0.039609 25.25
(58.25) (1.92) (21.75)

ID52 - Vol. 6 - Certification Team Practices Page 16

State A B C D E
(scwjeainejilename }

ISI.,1,Yes} 14.71 0.7 1.28 0.056550 17.70
(31.33) (1.33) (17.30)

{S ,L2,Yes } 25.32 0.5 1.46 0.064334 15.55
(40.79) (2.24) (14.76)

S 1,L3,Yes} 27.59 0.49 1.98 0.087216 11.47
(40.90) (3.19) (10.98)

{S1,LA,Yes} 26.89 0.53 2.92 0.128292 7.80
(38.22) (4.53) (5.43)

{S 1,L5,Yes} 22.73 0.7 1.4 0.061614 16.23
(32.37) (1.5) (15.45)

{S2,LI,Nol 57.77 0.25 1.62 0.071296 14.04
(67.51) (4.06) (12.94)

{S2,LI,Yes} 172.87 0.12 0.14 0.006283 161.29
(187.02) (0.42) (161.13)

{S3) 78.72 0.23 0.42 0.018381 54.64
(90.59) (0.97) (50.87)

(S41 60.99 0.28 0.66 0.029072 34.48
(70.27) (1.42) (34.29)

$S5) 41.48 0.39 1.46 0.064146 15.60
(50.31) (2.71) (15.43)

Terminated 21.73 1.0 1.0 0.044010 22.73
{-,-,-} (21.28) (0) (22.01)

ID52 - Vol. 6 - Certification Team Practices Page 17

Table 2.6.2 - Analytical Results for the Usage Chain with Uninformed Probabilities
The expected use length: 25.9 stimuli
The expected number of uses until each state is visited: 4.67
The expected number of uses until each arc is traversed: 9.43

A: The expected number of state transitions until each state occurs from Uninvoked
B: The probability that a state occurs between Uninvoked and Terminated
C: The expected number of occurrences of a state between Uninvoked and Terminated
D: The steady state probability of each state
E: The expected time until a state recurs

State A B C D E

S(scnieJinefilename) I A
Uninvoked 26.9 1.0 1.0 0.037175 26.90

(25.25) (0) (23.65)

ISI,LI,No} 30 0.5 2.7 0.100372 9.96
(49.44) (4.38) (6.52)

IS1.L2,No) 47.38 0.36 2.4 0.089219 11.21
(63.68) (4.85) (7.45)

1S1,L3,No) 58.14 0.32 2.1 0.078067 12.81
(71.66) (4.61) (8.96)

ISI,L4,No) 57.5 0.33 1.8 0.066914 14.94
(69.41) (3.79) (10.82)

{Sl,L5,No} 36.8 0.5 1.5 0.055762 17.93
(50.01) (2.29) (11.36)

{Sl,LI,Yes} 25.8 0.5 2.7 0.100372 9.96
(41.65) (4.38) (6.52)

IS1,L2,Yes) 41.97 0.36 2.4 0.089219 11.21
(54.32) (4.85) (7.45)

1 S 1,L3,Yes 1 52.54 0.32 2.1 0.078067 12.81
(61.54) (4.61) (8.96)

{SI,L4,Yes} 52.7 0.33 1.8 0.066914 14.94
(59.87) (3.79) (10.82)

(S1,L5,Yes} 33.8 0.5 1.5 0.055762 17.93
(42.74) (2.29) (11.36)

1 S2,LI.No} 58.89 0.32 0.9 0.033457 29.89
(73.48) (1.82) (20.73)

I S2,LI,Yes) 54.69 0.32 0.9 0.033457 29.89
(65.12) (1.82) (20.73)

S$S3} 74.6 0.25 0.8 0.029740 33.62
(81.01) (1.92) (26.14)

{ S4 j 89.97 0.22 0.7 0.026022 38.43
(92.98) (1.81) (31.48)

ID52 - Vol. 6 - Certification Team Practices Page 18

State A B C D E
I screenJinefilename I

JS4) 89.97 0.22 0.7 0.026022 38.43
(92.98) (1.81) (31.48)

IS5 96.53 0.21 0.6 0.022305 44.83
(97.75) (1.55) (34.25)

Terminated 25.9 1.0 1.0 0.037175 26.90
1-,-,-} (25.25) (0) 1 (23.65)

Understanding and interpreting the analytical results is an important step for the certification
team. The Certification Assistant tool will compute the results automatically and print summary
reports as well in order to aid in this analysis process. The analytical results are also packaged
into a coverage report by the CA which gives a return-on-investment analysis. The report gives
a sequence-by-sequence analysis of the expected coverage of states and arcs of the usage model.
The report is shown in Table 2.6.3.

Table 2.6.3 Expected Coverage Report

Sequence Number % States Covered % Arcs Covered

1 11.76 87.20
2 29.41 87.54
3 47.06 88.58
4 70.59 90.31
5 88.24 91.70
6 94.12 92.39
7 94.12 92.73
8 94.12 93.08
9 100.00 93.77

10 100.00 94.81

11 100.00 94.81
12 100.00 95.16
13 100.00 95.85
14 100.00 96.89
15 100.00 98.27
16 100.00 99.31
17 100.00 100.00

2.7 Document Model(s) In Specification (S4.i.2.7.6)

The models and all supporting analyses needs to be documented in Volume V of the
Specification. The outline specified in Section 5.5 of Volume 4 can be used to guide the
preparation of the volume. The outline for that volume is:

ID52 - Vol. 6 - Certification Team Practices Page 19

Section 1: Usage States

This section contains a list of each usage state element and an enumeration of each usage state.
If any usage states are omitted, the reasoning supporting the omission should be included in this
section.

Section 2: Transition Possibilities and Transition Stimuli

This section should contain either the STD and/or the tabular representation of the transitions
among the usage states, the stimuli that cause each transition, and the probability with which each
transition occurs. Furthermore, some reasoning of each distribution should be included. If any
real or hypothesized data was used to determine the probabilities, it should be included or
referenced.

Section 3: User Classes

Each user class should be listed along with justification of its importance.

Section 4: Usage Model Analysis

The statistical analysis of section 2.6 should be performed in its entirety and included in the
specification. Any results of specific interest should be highlighted. Specifically, any resulting
arguments about the appropriateness of the probabilities should be included that is based on the
analytical results.

Section 5: Assumptions

In developing the usage profile, it may be necessary to make certain assumptions. For example,
a description of assumptions concerning the usage states and stimuli distributions should be
completely documented to the satisfaction of all appropriate stakeholders.

2.8 Usage Profiles For Increments

The software will be constructed and certified in increments. Each increment is executable by
user commands. In order to measure the reliability of each increment, it is necessary to develop
a usage profile for each increment from the usage profile for the entire system. The expected
usage profiles for each increment are developed in process P5.j.l. The Markov model for the
entire system is specialized for each accumulation of increments. Procedures for doing this are
discussed in section 3.2.

ID52 - Vol. 6 - Certification Team Practices Page 20

CERTIFICATION TEAM PRACTICES

SECTION 3: PREPARE FOR CERTIFICATION OF ACCUMULATION J TASKS

Both processes P5.j. 1 and P5.j.2 include engineering tasks that prepare for the certification of an
accumulation. Process P5.j. 1 includes engineering task S5.j. 1.2 which results in a usage profile
tailored to accumulation j.

proc P5.j. 1: Tailor Specification to Increment/Accumulation j
do [P5.j. 1: Tailor Specification to Increment/Accumulation j]

con
S5.j. 1.1: Tailor Black Box function to increment/accumulation j;
S5.j. 1.2: Tailor Usage Profile to increment/accumulation j;

noc;
until

Completion Conditions achieved for S5.j.I.1 and S5.j.1.2
od;

corp;

Engineering practices for performing task S5.j. 1.2 are discussed in section 3.1.

Process P5.j.2 includes all the other tasks that are required to prepare for the certification of an
accumulation.

proc P5.j.2: Prepare for Certification of Accumulation j
[This process results in test plan and test scenarios for accumulation j]
[P5.j.2: Prepare for Certification of Accumulation j)
con

do
do

C5.j.2.1: Prepare Test Plan;
until

Completion Conditions for C5.j.2.1 Achieved
od;
do

con
C5.j.2.2: Prepare Test Scenarios or Test Scenario Generator for Accumulationj;
C5.j.2.3: Determine Expected Test Results;

noc;
until

Completion Conditions for C5.j.2.2 and C5.j.2.3 Achieved
od;

od;

ID52 - Vol. 6 - Certification Team Practices Page 21

C5.j.2.4: Increase Understanding of Problem and Solution Domains;
noc;

corp;

Process P5.j.2, Preparation for Certification of Accumulation j, consists of four tasks (i) prepare
test plan, (ii) prepare test scenarios or test scenario generator for accumulation j, (iii) determine
expected results for test scenarios, and (iv) increase understanding of problem and solution
domains. These tasks result in the accumulation test plan deliverable and put the Certification
Team in position to certify an accumulation of a software system. Engineering practices for
performing these four tasks are discussed in sections 3.2 through 3.5.

These activities support the creation of documentation necessary to certify an accumulation of a
software system. The Completion Conditions for each task can be found in Volume 3.

3.1 Tailor Usage Profile to Accumulation j ($5.j.1.2)

A subset of the usage profiles for each user class is developed from the specification and
included in Volume 5 of the specification volume. A subset of the usage profile must be
developed for each accumulation except the last accumulation whose profile is equal to the entire
product profile.

The usage profile developed during the specification phase is specialized to meet the goals
specified in the test plan. Specifically, the Markov chains' corresponding to each stratum are
constructed and analyzed.

The Markov chains for the strata are a subsets of the STD for the accumulation.

A stratum Markov chain can sometimes be directly extracted from the accumulation Markov
chain simply by removing states and/or stimuli and normalizing the probabilities. This creates
a transition matrix which is a subset of the usage profile. It is acceptable to introduce
bookkeeping states and/or null stimuli in order to simplify the sub-models and maintain consistent
organization of the sub-models.

Before any testing begins, the accumulation model should be analyzed as described in section 2.6.
The following analytical results are available from the analysis:

"• the number of steps until a given stimulus appears in a test scenario
", the number of steps until all stimuli appear in a test scenario
"* the probability with which each stimulus appears over time
"* the number of steps until a stimulus recurs (appears again)

IThe STD with probabilities attached to the arcs describes a finite-state, discrete-parameter Markov process. These
processes are commonly called Markov chains. In this process manual, one can think of the Markov chain as either the
probabilism. STD or as a transition matrix with the states as indices and the transition probabilities as entries.

ID52 - Vol. 6 - Certification Team Practices Page 22

"* the number of appearances of a stimulus in a single test scenario
"* the number of sequences that appear between appearances of a given stimulus
"* the probability that a given stimulus appears in a sequence
"* the number of sequences until a given stimulus appears
"* the number of sequences until all stimuli appear

This information is used to compare the behavior of the stratum Markov chains with the expected
usage results in the test plan. Any inconsistencies must be removed before test scenarios are
prepared.

The analytical results give information that needs to be included in the test plan; specifically, the
information that gives insight into budget considerations (the expected amount of testing until
certain events occur, etc.) should be included in the section on testing constraints/level of effort.

3.2 Prepare Test Plan (C5.j.2.1)

Preparing an adequate test plan for an accumulation of a project is the first step toward accurate
software certification. This test plan is an extension and augmentation of the usage profile.
During the specification phase, the principal objective is to describe usage of the software and
to gain an understanding of how this usage will affect the development and testing of the
software product. During the certification planning phase, the usage profile is augmented by
including other testing-related issues such as requirements modeling, mission-critical usage,
stratification, etc. The test plan is created during this phase and describes in detail the results
achieved during the planning process. The test plan has the following sections:

1. Certification Statement
2. Testing Requirements
3. Testing Constraints
4. Definition of Strata

Test Plan For [Accumulation j]

Section 1: Certification Statement

The first step in developing an adequate test plan is to organize a certification statement for the
entire software product. That is, what information should the certification process give
stakeholders about operation of the software? Once this statement is created and agreed upon
by all stakeholders, the usage profile is specialized so that the certification statement can be
fulfilled.

The certification statement should cover all important aspects of a software product. The first
such aspect is the intended quality level of the certified product and each accumulation. An
example is as follows.

ID52 - Vol. 6 - Certification Team Practices Page 23

The accumulation must show a reliability level of not less than x% for each version2 of the
accumulation in the statistical test.

If the accumulation will be released to users then the statement may be altered as follows.

The accumulation must show a reliability level of not less than x% for each intermediate
version in the statistical test and the final version must exhibit failure-free (i.e., correct)
behavior.

Such statements will aid the Certification Team in making stopping decisions and guide them in
determining when to submit failure reports to (and receive engineering change notices from) the
Development Team.

Another important aspect of test planning is to ensure that the certification is meaningful. This
requires accounting for each important attribute of the accumulation in the test scenarios so that
the certification report (which is based on the scenarios) is worthwhile to the end-users. For
example, if one claims a 99% confidence in the correctness of their software but fails to address
any safety-critical issues in the statistical test, then the correctness measure is meaningless to a
large number of stakeholders. Likewise, if the statistical test fails to cover important test
requirements that are mandated by certain stakeholders, then the certification, no matter how
accurate, is incomplete. Thus, the certification statement may be again altered as follows.

The accumulation must show a reliability level of not less than x% for each intermediate
version in the statistical test and the final version must exhibit failure-free (i.e., correct)
behavior. Furthermore, the requirements: r1, r2, ... r. must each be addressed during the test.

Section 2: Testing Requirements

It is crucial that all testing requirements be stated in test planning phase so that they are
addressed during the statistical test (and thus included in the certification). These include: (i) all
requirements of interest to stakeholders; including any safety-critical or mission-critical functions
that the software performs and (ii) attributes of the input domain and/or internal software state
that should be observed during the test. It is important to remember that the certification results
are conditioned on the usage profile. Any important attribute of the software is certified by
including it in the usage profile and mandating its appearance in the statistical test (via the
certification statement). Of course, one could simply craft a few well-designed test cases in order
to cover important events; however, this keeps such information from being included in the
certification. We prefer including as much information as possible into the usage profile so that
all knowledge about the software's ability to perform its intended function is embodied in the
certification results.

2A new version of an accumulation is obtained whenever changes to the software occur as a result of errors located
during the statistical test.

ID52 - Vol. 6 - Certification Team Practices Page 24

Section 3: Testing Constraints

Any testing constraints such as maximum allowable expenditure of resources should be included
in the test plan. Of particular importance are personnel resources and time constraints because
these will impact the number of strata that one may be limited to in the certification.

Section 4: Definition of Strata

Each user class and set of requirements may necessitate the definition of a stratum of use. A
stratum is a subset of the usage profile that describes a particular user type or satisfies a
requirement or set of requirements. For each stratum, several questions must be answered. First,
where will the randomization will occur in the stratum. Randomization can be in either the
control flow, the data items, or (preferably) both. Second, statistical aspects of the stratum must
be determined through analysis. The analysis will describe pertinent statistical properties of the
stratum including, expected number of stimuli/states in a scenario and the expected makeup of
each scenario. Third, for each stratum, the mapping back to user classes and requirements must
b;.- made explicit. The purpose of each stratum and the reason for including it in the certification
needs to be clear.

Some stratum may or may not be the focus of the intermediate increments of a software product.
In fact it is reasonable to choose different stratum for each intermediate increment to increase test
diversity and then certify the final increment using all the strata. If such a strategy is to be used,
each stratum should be tied to one or more increments and documented in this section.

For each stratum in an accumulation, the following items are required in the test plan.

1. Stratum Description and Justification
2. Randomization Rules
3. Definition of a Use
4. Identification of Supporting Data Files
5. Usage Analysis Expectations
6. Constraints/Level of Effort

Section 4.1: Stratum Description and Justification

The goal of defining strata for an accumulation is to optimally characterize usage of the software.
A stratum for each user type is possible as well as any additional strata that increase the value
of the certification for the stakeholders. In particular, the entire accumulation usage profile
represents the most general stratuM for an accumulation. Other useful strata are (i) an illegal
usage stratum, which models incorrect stimuli distributions, (ii) a critical function stratum, which
models exception conditions and other low probability events that may not occur under normal
usage, and (iii) a quickly convergent stratum, which allows for fast input domain coverage.
Multiple user profiles require that the appropriate states and arcs for the increment under test be
duplicated and that new transition probabilities be established that characterize the new stratum.

ID52 - Vol. 6 - Certification Team Practices Page 25

These profiles would represent either separate test beds yielding multiple certifications of the
software or can be integrated into a single model which represents a combined user profile (an
average across all users and all strata). The costs of multiple tests must be weighed against the
additional information such test provide in order to determine whether such strata are desirable.
Multiple models raise both the cost and the effectiveness of certification. The cost might be
offset somewhat by manipulating the transition probabilities of the strata profiles to obtain faster
convergence.

Each stratum is justified by mapping the need for the stratum to a specific user class or testing
requirement. The coverage of the testing requirements and user classes is documented by
creating this mapping.

Section 4.2: Randomization Rules

For each stratum, a decision needs to be made about the nature of the randomization present in
the test generation process. For example, one may want to randomize the control flow through
the software during the test but use a fixed set of data files as input. The opposite could also be
true, randomly generated data files could be used during the execution of specific control flow
sequences. In general, one should attempt to randomize as many aspects of the test as possible.

In the case that a defined stratum has only a finite number of test scenarios associated with it,
statistical testing can (and should) be replaced by exhaustive testing. Such an exhaustive test
serves as a proof of correctness given the stratum.

Section 4.3: Definition of a Use

The planning phase is not complete until an acceptable definition of a use for each stratum is
established. This definition will likely be some suitable description of a single user-session with
the accumulation. For example, a user session that begins with invocation of the software and
ends with termination of the software is a common definition of a use for interface-driven
systems. In a real-time environment it might be power-up to power-down or logon to logoff.
It is a good idea to include some sample sequences of use once this definition is established and
agreed upon by all stakeholders.

Certification establishes i quality measure based on the definition of a use, i.e., the software
performs correctly on x% 91 uses. The length of a use can be measured in numbers of stimuli,
processor time, wall clock time, etc. A certification goal establishes the target criterion for the
statistical test. This goal can be in terms of reliability (e.g., .95, .98, 2 sigma, etc.) or MTTF
(e.g., 1000 uses, etc.) whichever criterion makes the most sense for the application. In any case,
testing continues until the target measurement, specified in the certification statement, is reached.

Section 4.4: Identification of Supporting Data Files

ID52 - Vol. 6 - Certification Team Practices Page 26

The file identification of the state transition diagram (STD) files that are input to any automated
processing should be included for easy reference. Additionally, any supporting documentation
should be identified.

Section 4.5: Usage Analysis Expectations

The analysis presented in this volume, section 2.4, is used to evaluate the stratum sub-model and
any specific profiles for the accumulation. This analysis will give insight into the testing
considerations for the specific accumulation. Any knowledge or intuition about usage patterns
of each stratum should be documented so that it can be compared to the results of the statistical
analysis.

Section 4.6: Constraints/Level of Effort

The testing constraints (i.e., resources, budget, etc.) and level of effort that affect each stratum
is documented so that management decisions can be made to resolve any conflicts.

The test planning phase is complete when the certification statement is agreed upon by all
appropriate stakeholders.

A schematic of the test planning phase is picture in Figure 3.2.1. Note that this diagram defines
an accumulation of size nxn and strata of smaller sizes (n-hxn-h and n-ixn-i) as well as a stratum
of the same size as the accumulation model. All of these definitions are legal under the
certification framework. The stratum of the same size as the entire accumulation profile indicates
that the model has the same states and arcs but defines different probabilities. This is a common
occurrence in software certification for different user classes with the same possibility space but
different usage characteristics.

3.3 Prepare Test Scenarios or Test Scenario Generator for Accumulation j (C5.j.2.2)

The number of test scenarios required to certify an increment is directly related to the complexity
of the usage profile defined as a Markov process. From the Markov chain, certifiers compute
the expected number of test scenarios until each stimulus is generated at least once. This number
is excellent insight into the expected minimum amount of testing required to test the increment.

Test generation from the usage chain is achieved by traversing the arcs of the usage chain from
invocation to termination (according to the definition of a use) based on the transition
probabilities. This is easily automated using a good random number generator and any high level
language. The Certification Assistant tool automatically generates these stimuli sequences. As
each arc is traversed, any necessary information is included in a test scenario file. The
information included in the scenario file is determined via test fragments which correspond to the
arcs of the chain. Most often, the test fragments simply output a single stimulus label or a series
of labels. Thus the test scenario is a sequence of stimuli that the certifier applies to the software,

ID52 - Vol. 6 - Certification Team Practices Page 27

Figure 3.2.1: The Test Planning Process

TMs Plean(-
Usage Profile Document

"* StjMH li~f
"• STD (nxn) 0 Teetine
"• Usge disL " q.._

Con~mit
a Definition of

in the order given, when the accumulation is available for certification. Some items that are
useful information to included in the test fragments are listed below.

"* state labels (operational software state)
"* arc labels (stimuli)
"* responses, pre-conditions, post conditions
"* requirements met
"* any other information that will be helpful in executing the scenario

The analytical results help certifiers discover capabilities and properties of the usage model which
are not directly apparent from the model itself and to make predictions about how the test will
unfold, e.g., the expected amount of testing until all the stimuli appear at least once, etc. If the
values computed analytically do not match some known usage probabilities or intuition, then an
investigation into (and possibly re-estimation of) the appropriate transition probabilities is merited.
Furthermore, since certifiers are able to statistically assess the amount of testing necessary to get
appropriate domain coverage and usage representation, they are able to formulate a testing budget
based on information obtained through scientific analysis.

ID52 - Vol. 6 - Certification Team Practices Page 28

A sample of two test scenarios from the example usage profile in section 2.2 of this volume
appear in Table 3.3.1. In this example, the test scenario consists of a sequence of external
stimuli, no states are necessary to execute the scenarios.

Table 3.3.1: Test Scenarios and Expected Results

Sequence Number 1: Expected Response 1: Sequence Number 2: Expected Response 2:

CRM <legal.filename> name in project field CRM project field blank
Dn Arrow key cursor on line 2 Dn Arrow key cursor on line 2
Enter key display screen 3, Enter key display screen 3.

back to screen 1 back to screen 1
Enter key display screen 3, Dn Arrow key cursor on line 3

back to screen I Up Arrow key cursor on line 2
Enter key display screen 3. Up Arrow key cursor on line 1

back to screen 1 Up Arrow key cursor on line 5
Dn Arrow key cursor on line 3 Dn Arrow key cursor on line 1
Up Arrow key cursor on line 2 Enter key display screen 2.
Dn Arrow key cursor on line 3 back to screen 1
Enter key display screen 4. Enter key display screen 2,

back to screen 1 back to screen I
Dn Arrow key cursor on line 4 Up Arrow key cursor on line 5
Up Arrow key cursor on line 3 Enter key exit to OS
Enter key display screen 4.

back to screen I
Dn Arrow key cursor on line 4
Enter key display screen 5.

back to screen 1
Dn Arrow key cursor on line 5
Up Arrow key cursor on line 4
Dn Arrow key cursor on line 5
Enter key exit to OS

3.4 Determine Expected Test Results (C5.j.2.3)

Determining the expected results for the test sequences is a difficult manual step for which we
can, unfortunately, offer no profound wisdom as guidance. Basically, one must use the
specification as the oracle for determining the expected external responses and behavior of each
test scenario. It is a good practice to record these responses (in the form of screen display,
changes to data files, etc.) in advance to ease the burden of comparing the actual and expected
result for each test scenario.

An example of expected results is included in Table 3.3.1.

ID52 - Vol. 6 - Certification Team Practices Page 29

3.5 Increase Understanding of Problem and Solution Domains (C5.j.2.4)

Many issues and questions arise during all phases of the Cleanroom certification process. These
issues are often the result of some new, unknown factor being noticed. This factor may become
a part of the certification activity or it may not. But to make any sort of determination, the issue
must be understood. As a result, the Certification Team must find clarifications and answers
expeditiously.

The first task required of the Certification Team when faced with a issue or question is to fully
understand it. This will require talking with the individual(s) who raised the problem. If it is
a simple misunderstanding, the matter can be settled by a clarification and complete answer.

Deeper issues will necessitate an increased understanding of the problem domain and the solution
domain. A Certification Team member, or the entire Certification Team may be required to go
off and perform an analysis task. This will typically include information through interviews and
document reviews. Also, more information on solution opportunities can be gathered. This new
information is integrated with the known information to create an analysis report that documents
what has been learned. The task of increasing the understanding of system requirements
continues until the resolutions to the questions are considered satisfactory.

ID52 - Vol. 6 - Certification Team Practices Page 30

CERTIFICATION TEAM PRACTICES

SECTION 4: SOFTWARE CERTIFICATION FOR ACCUMULATION J TASKS

Process P6.j, Software Certification for Accumulation j consists of six tasks with the purpose of
gathering and organizing the data that is necessary to perform a scientific certification of the
quality of a product accumulation. These tasks result in the certification of the software
developed to the specification, allowing the project team to appraise the quality of the software
product and of the software development process.

proc P6.j: Software Certification for Increment/Accumulation j
[P6.j certifies the code, and makes the decision as to whether an increment will be accepted
or rejected.]
do [P6.j: Software Certification for Increment/Accumulation Ji

C6.j. 1: Build Accumulation j;
if no pre-certification failures
then

while
certification plan requires more tests and sufficient failures have not been observed
to make it desirable to terminate testing and wait for corrections

do
C6.j.2: Perform Certification Tests for Accumulation j;

od;
fi;

if at least one failure observed and observed failures are considered to be correctable
then

C6.j.3: Prepare failure report(s);
D6.j.4: Correct failure, verify correction and prepare ECN;

fi;

M6.j.5: Management Decision: (1) certification complete-accumulation quality satisfactory,
(2) certification complete-quality not satisfactory-replanning Is required or (3)
certification should continue;

if not Management Decision is certification should continue
then

C6.j.6: Prepare Certification Report(s);
fl;

until
Completion Conditions achieved for C6.j.6

od;
corp;

Of the six subtasks, two of them, D6.j.3, Correct failure, verify correction and prepare ECN, and
M6.j.6, Management Decision: (1) Certification Complete-Accumulation Quality Satisfactory, (2)
Certification Complete-Quality Not Satisfactory-Replanning Is Required or (3) Certification

ID52 - Vol. 6 - Certification Team Practices Page 31

Should Continue, are described in detail in separate volumes. D6.j.3 is explained in Volume 5,
section 5 and M6.j.6 is described in Volume 3. The other tasks are described in detail in the
sections below.

4.1 Build Accumulation j (C6.j.1)

Before certification can begin, the Certification Team must received a fully verified code
accumulation from the Development Team.

When an accumulation is available from the Development Team, it is given to the Certification
Team for compilation, linkage, and execution. The Certification Team owns the accumulation
and the compiler at this point and the software is under strict configuration control. The software
being under configuration control means that all failures and engineering changes are formally
documented. The Certification Team places the software into the controlled library and compiles
each code unit in the accumulation. Upon completion of successful compilation, the code is
linked or assembled. Once the code is ready for execution, it is placed in the execution library
so that test scenarios may be run. The process for compilation and linking of Cleanroom code
is not substantially different than for other software development processes. The primary
differences are the individuals who conduct the compilation and linking (i.e., the Certification
Team as opposed to Development Team) and the early appearance of code under configuration
control (code is placed in a controlled library before first compilation as opposed to before system
integration).

4.2 Perform Certification Tests For Accumulation j (C6.j.2)

When the usage chains for the strata are complete and the analytical results are acceptable, test
scenarios are generated and certification begins. The certification for each stratum can be
performed in parallel. However, each such test must be performed on the same version of the
code. Thus when failures reports are submitted to the Development Team from one certifier, all
test activity should be halted until the engineering changes are complete and the new software
version is available.

It is crucial to enforce that only the statistical test scenarios be executed, i.e., no other executions,
for purposes of finding failures, against the software are allowed until the desired level of
certification has been reached. At this time some crafted test cases can be executed, but the
results are not included in the certification report. However, any failures found during such
testing must be reported (along with all the other failures found during execution) in a final
Accumulation Failure Report. This report will contain all compilation failures, link failures, and
execution failures that were observed.

Test scenarios are executed either manually or automatically depending on the environment and
the automated support available. Each stimulus which appears in the scenario must be executed,
including those that represent illegal behavior. Tests are executed in the order that they are
generated from the model and each is checked against the specification which acts as the oracle

ID52 - Vol. 6 - Certification Team Practices Page 32

for the certification. It is a good practice to analyze the test scenarios in advance to determine
the expected behavior and use this to aid in the evaluation effort when executing the tests.

Upon the observation of a failure, a decision must be made to either halt testing while the code
is re-engineered or to continue testing and postpone the repair. Catastrophic failures require an
immediate halt because they effectively inhibit the ability to execute further tests. Non-
catastrophic failures may be queued for repair as long as they do not affect the ability to execute
the test and construct the certification history. Local work rules must be established to determine
the action to be taken in both circumstances. Typically, returning non-catastrophic failures to the
developers as they occur (or in groups) is acceptable. Certification can continue while these
failures are repaired, however, catastrophic failures require that all certification activity halt while
corrections are made.

Failures can be classified according to two general criteria: reasonable mistakes and basic design
flaws. Software development is a creative process that can lead to the introduction of errors.
Even though Cleanroom is a rigorous engineering process, humans make mistakes and these
mistakes are understandable. However, Cleanroom also offers software engineers the ability to
create correct and efficient designs. Thus, errors in design, that should not have persisted through
a box structure expansion and verification, are not easily overlooked. When several of these
types of errors are located in a statistical test, redesign is more effective at improving the
software than additional testing and the software should be returned to the developers for rework.

Failures are reported to the Development Team via a failure report which gives sufficient
information for the developers to use in code walkthroughs to locate and fix the error.

Upon verification of the changes, an engineering change notice is submitted to the Certification
Team so that the code changes can be instituted and recompilation can occur.

A testing log must be created for each stratum in the accumulation. A sample testing log appears
in Table 4.2.1.

Table 4.2.1: A Sample Testing Log

Project:

Date Time Accum. Version Certifier Scenario # 1 Failure States Cont. after
Name (or C/L) I Report # Traversed failure?

ID52 - Vol. 6 - Certification Team Practices Page 33

4.3 Prepare Failure Reports

In the event that compilation or link failures occur, formal documentation is created to record the
appropriate information. A compilation or link failure is any action that results in the compiler
or link editor terminating unsuccessfully. A failure report must be completed for each failure
observed, i.e., for each problem the compiler or link editor finds. A sample of the failure report
form appears in Table 4.3.1 below. The failure report should provide sufficient information to
the Development Team to allow them to isolate and correct the failure. All failure reports from
the compilation or link editing of a subroutine or a set of subroutines should be filled out and
returned to the Development Team as a set. All compilation or link failures must be corrected
(and the changes verified) before certification can proceed.

Table 4.3.1: An Example Failure Report

FAILURE REPORT

Number: Project: Increment:
Certifier: Date:

Failure During: Compilation:
Linking:
Execution: - [Failure # Test Case #

Transition # Version #

Briefly describe the failure:

Attach any documentation that may clarify the failure:

Approval:

ID52 - Vol. 6 - Certification Team Practices Page 34

Any failures observed during compilation or linking should be categorized as residual design
defects and counted in the final errors/KLOC. In all cases, a failure report should be included
with the certification statistics. A general rule of thumb in Cleanroom is that greater than 5
errors/KLOC is not sufficient quality and the code should be redesigned and reverified instead
of performing additional testing. However, each situation should receive individual consideration
and many merit a different strategy. For example, new Cleanroom teams and teams working with
new implementation languages often need a period of methodology and language familiarization
before such a rule can be strictly enforced. But in any situation, a large number of serious errors
that result from poor design and/or illogical thinking bring into question the process that created
the software and redesign is necessary.

The compilation failures are investigated by the Development Team based on the failure report
and code inspection. Any changes must be team verified. An engineering change notice is then
submitted to the Certification Team for the actual changes to the code to be made. The
Certification Team retains control of the code throughout this process. Once the changes are
made, the Development Team is consulted for permission to recompile.

Failure reports are also completed for execution failures as well. Failure reports are typically
grouped and returned to the Development Team for correction as a set. Usually these reports are
accumulated either until (1) a specific test suite has been executed, (2) a specified number of
failures have been found, or (3) a failure has been observed that is serious enough, in terms of
its effect on functionality, to jeopardize further testing. Of course the certification report
(describes in the next section) can be used to indicate the return on investment of additional
testing. If no substantial rise in the reliability is indicated, then it is wise to halt testing and
submit failure reports for engineering changes. When failure reports have been submitted to the
Development Team for correction, certification can proceed in some cases. Other circumstances
merit a halt to testing activity until all of the failures are resolved, either by correction or
otherwise. The failures, as well as successes, are noted to calculate the level of certification for
the accumulation.

4.4 Prepare Certification Report(s) (C6.j.3)

The Certification Report is a document that contains the data from the entire software testing
process. This includes any statistical reports and testing logs as well as any other important team
experiences that characterize certification of a particular accumulation. Often, important insights
are gained that enable future teams to perform better tests. Such data should be documented so
it will be useful to any appropriate stakeholder.

One of the most important ingredients of the certification report is the team's recommendation
for acceptance/release of the product.

The Certification Team can choose from any number of data reporting strategies that exist in the
literature to include in the certification report. Cleanroom can support a wide range of reliability
modeling and/or growth modeling. Most models require only the number of test cases that were

ID52 - Vol. 6 - Certification Team Practices Page 35

applied to the software, along with the number that failed, to be input to the model. This data
is then used, often accompanied by assumptions about its probabilistic makeup, to estimate the
system reliability and MTTF. For example, hypothesis testing assumes that failures are
discovered according to a binomial distribution. Additionally, the certification model (a popular
reliability-growth model) computes the reliability as a function of the interfail times of the
software assuming that the interfail times are exponentially distributed. It is wise to use a variety
of methods so that a basis of comparison across models and across projects is established. In the
following sections, several options are outlined.

4.4.1 Markov Chain Reliability Model

A method for modeling software reliability and/or correctness using all the data from the
statistical test, including each individual stimulus applied and each operational state visited has
been developed. This model allows a detailed certification that is sensitive to the usage
distribution (as defined by the usage profile) and does not make assumptions about the
distribu'" of important random variables.

As the test progresses, the certification history is maintained as a sequence of stimuli that were
actually executed against the software, i.e., the certification history is the ensemble set of test
scenarios actually executed and treated as a single long sequence. When failures are observed,
a unique symbol that marks each the failure is inserted into the certification sequence immediately
following the last stimulus successfully applied to the software. Note that if a failure causes parts
of the scenario to be impossible to execute (as happens with a system crash) then these states are
not included in the certification history. Thus, the certification history is a sequence of actual
stimuli applied to the software with failure symbols included at the location they occurred.

Let s1, s2, ... , s, denote the sequences of stimuli generated from the usage model and applied to
the software. If no failures are discovered, the certification history (i.e., the unmodified
sequences) is encapsulated into a model called the testing model (or, equivalently, the testing
Markov chain). The initial testing model To is an exact copy of usage chain with all arc
probabilities set to zero. Testing chain T, is obtained from To by incrementing arc frequencies
along the path of states in s,. Similarly, T2 is obtained from T1 by incrementing the arc
frequencies traversed during sequence s2. In general, Ti is obtained from T,.• by incrementing the
arc frequencies which exist in sequence s3.

Frequency counts in testing chain Ti are always obtained from specific sequences applied to the
software; making the testing chain an accurate picture of the current state of the certification
process. At the completion of any sequence i during the certification process, the frequency
counts can be converted to probabilities whenever computation using T is required. The testing
chair can be used to determine the degree to which the test cases generated are representative
of the original usage model. This is performed through a statistical comparison of the usage
model and the testing model.

ID52 - Vol. 6 - Certification Team Practices Page 36

If the certification history contains failures, states are added to T to model the failures. Consider
the j' failure fj detected during input of sequence s,. A new state labeled fj is placed in T, at the
exact location of its occurrence in si. The arcs to and from fj are assigned frequency count 1.
In the event that j is catastrophic, then the arc from fV goes to the terminate state; otherwise the
application of the test sequence can continue and the arc from fj goes to the next state in si. The
testing chain T, incorporates the underlying structure of the usage profile and the failure
characteristics of the test history; making it a powerful and accurate computational device; as will
be described in the next section.

A testing model is created for each stratum defined for the accumulation.

The Certification Assistant tool automatically constructs certification histories.

A testing model is the basis for an analysis which yields very valuable information.

First, analytical stopping criteria are available through comparison of the statistical properties of
the usage profile (what is expected to occur in test) and the testing model (what did occur in
test). When these properties are sufficiently similar then testing can stop because the test
sequences used are a representative sample of the usage model itself. These measures are called
discriminants.

Two discriminant functions, the discrimination and distance, are available for incorporation into
any certification experiment.

The discrimination measure describes the difference between U and T in terms of the their
stochastic sequence generating properties. When the discrimination is 0, U and T generate the
same set of sequences. When the discriminant is small, the sequences generated are very similar.
When T is large or infinite, the sequences are very different indeed. A small discrimination
means that U and T generate a similar sequence set. In order to do this, parameters of U and T
must be very similar, indicating that T is representative of U. The discrimination is only
computable when all of the arcs in U have been traversed at least once during testing.

The distance is a measure related to the discrimination in that it is based on a comparison of U
and T. The distance is computed by a geometric interpretation of U and T in multi-dimensional
euclidean space. U represents a fixed vector in space and T changes as it is updated during the
test. The euclidean distance is defined for any T, and U indicating how distant the vectors are
and indicating to the certification team the representativeness of the sample.

We recommend that both measures be computes with each sequence applied to the software so
that certifiers have multiple datum to use in the determination of stopping the certification
process.

The Certification Assistant tool computes both of these measures.

ID52 - Vol. 6 - Certification Team Practices Page 37

Second, software quality measurements are available from the testing model. Computable values
include the following.

"* reliability: the probability of correct execution
"* MTTF: the expected time that the software will run from invocation
"* MTBF: the expected time that the software will run between failures
"* failure rate: the expected number of failures per execution

The Certification Assistant tool computes each of these measures from the testing model.

The construction of the testing model is an algorithm. However, several options exist for
determining what data to store in the testing model and when to re-initialize it. Two major
decisions must be made. First, should errors be counted every time they are encountered or
should they be acknowledged only at their first occurrence. In other words, do we include
information about repeated software failure which corresponds to the failure reports or simply
acknowledge each individual failure corresponding to an engineering change notice. Second, after
the software has be re-engineered by the Development Team as a result of the failures, should
the testing chain be re-initialized at zero frequency counts in order to mark the certification of
a new software version or should the history of the accumulation be maintained.

There are two different strategies for reporting test results. The first strategy keeps all the testing
data for an entire accumulation in a single testing model and counts failures only once. This
accumulation testing model describes the entire testing experience of an accumulation and allows
analysis of the performance of the software over the entire accumulation. In this model, each
failure state is installed only once and the frequency counts into the failure states are not updated
unless they appear again after an attempt was made to repair them. In other words, a state is
installed for each engineering change applied to the software.

The second strategy is to begin construction of the testing model, adding failure states as
appropriate, and restart the frequency counts at zero after modifications to the software are made
and testing resumes. Note that the failure states are removed when the frequencies are re-
initialized. In this model, frequency counts to the failure states are updated each time the failure
state is observed. Thus, a separate testing model for each version within an accumulation is
established. This strategy is called the version testing model and consists of a single model for
each version within an accumulation. Of course, other models are possible and may be valuable
for specific applications.

Computation of the analytical results from the testing model is the same regardless of which
model (accumulation model or version model) one decides to build. However, the interpretation
of the results are different. Analysis of the accumulation testing model yields data about the
process of testing the code. The results apply to the overall process and the individual failures
within the process. Failure states are not physically removed but their effect is washed out by
repeated successful sequences, giving evidence that the failures were successfully eliminated by
the engineering changes. The version testing model is an accurate picture of the current state of

ID52 - Vol. 6 - Certification Team Practices Page 38

the software and the results apply only to a specific version. Table 4.4.1 summarizes the
organization and interpretation of each of the two methods of software certification.

Table 4.4.1: Two Views of Software Certification

Strategy Rules Analysis

Accumulation Each test sequence from the entire Results apply to the testing
Testing Model accumulation is included process and not necessarily

to the software
Frequency counts are never re-initialized

The reliability (and other
Failure states are never removed quality measures) reflects

the entire testing process
Frequency counts to failure states are and every failure observed
incremented only on the first occurrence in the accumulation
of the failure or after an attempt has been
made to correct the failure and it re- The discriminant functions
appears reflect the restoration of

confidence in the software
despite the appearance of
failures

Version Only the test sequences for a specific Results are applicable to the
Testing Model version are included current version of the

software if it were released
Frequency counts are re-initialized when to users without change
changes to the software are made (i.e., a
new version is obtained) The reliability reflects the

current status of the version
Failure states are removed when changes of code currently in testing
to the software are made

The discriminant functions
Frequency counts to failure states are reflect the progress of
updated each time the failure is observed testing on the current

I version

A sample certification report appears in Table 4.4.2 for an accumulation. The certification reports
for the individual versions appear in Tables 4.4.3 to 4.4.5. These tables illustrate the differences
between two interpretations of the test data. This data shows a total of four failures observed
during the application of 50 test sequences. Table 4.4.2 contains the computations from the
accumulation interpretation of the testing model. Note that since failures have occurred, this
interpretation will never yield an estimate that the software is correct despite changes to the code
that may cause it to be so. Also, each failure appears only once, signifying that the failures were
not encountered after the engineering changes were implemented. The subsequent tables shows

ID52 - Vol. 6 - Certification Team Practices Page 39

the computations according to each version. The first version (Table 4.4.3) of the software
contains three failures in 15 sequences. Multiple appearances of the failures are also logged.
After sequence 15, failure reports are submitted and the software is re-engineering. Testing is
restarted at this point on the second version of the software. The fourth failure is observed at this
point, occurring three time before testing is again halted. The last version then reveals failure-
free behavior over 25 additional sequence resulting in a reliability estimate of 1. Thus, the
stopping criteria are the measurement that become the indicator of how much evidence the
statistical test has given that support this conclusion.

These report(s) serve two distinct purposes. First, in their complete form shown in Tables 4.4.3
to 4.4.5, they give detailed information to the developers and certifiers who are working on the
project. Additionally, graphing the data is also helpful in discovering general trends and
compactly displaying the results. Second, summary reports are good for other stakeholders on
the project. Summary reports contain at least the following items.

1. the total number of failures in each version of each stratum
2. the total number of engineering changes in each version of each stratum
3. last line of each certification report containing the reliability, etc.

The Certification Assistant tool produces reports similar to the following.

Table 4.4.2: Certification Statistics for a Sample Accumulation

Sequence Reliability MTBF Discrimination Distance
Number [[I I-

1 1.0 00 00 0.90459634
2 1.0 00 CO 0.90663380

3 F1 0.7621622 163.0 00 0.88497270
4 0.8216216 174.0 00 0.74395470
5 0.8572973 214.0 00 0.60730044
6 0.8736360 220.0 00 0.61295286

7 F2 0.7488309 124.4 00 0.67786315
8 0.7802270 130.0 00 0.49215428
9 0.7992595 175.0 00 0.49382823

10 0.8171245 178.0 c0 0.49754267

ID52 - Vol. 6 - Certification Team Practices Page 40

11 F3 0.7649534 125.3 0 0.57682800
12 0.7800361 136.3 00 0.57173108
13 0.7954131 142.0 00 0.57280911
14 0.8100399 158.0 o0 0.57627548
15 0.8216386 169.0 00 0.57726050

16 F4 0.7815236 128.0 *0 0.65294606
17 0.7928913 133.5 00 0.64848599
18 0.8018171 139.3 0.01831863 0.64201852
19 0.8105890 140.2 0.01772956 0.64070279
20 0.8195415 141.8 0.01797155 0.64153931

21 0.8266051 144.0 0.01770270 0.64037591
22 0.8341026 145.5 0.01798910 0.64126912
23 0.8404136 148.3 0.01332975 0.63638060
24 0.8466884 150.5 0.01359349 0.63742170
25 0.8520939 152.0 0.01354661 0.63699330
26 0.8575536 153.5 0.01386466 0.63793228
27 0.8620913 156.2 0.01395083 0.63740685
28 0.8675527 165.8 0.01088227 0.63434016
29 0.8715451 170.5 0.00927842 0.63150189
30 0.8755806 180.3 0.00971495 0.63287873

31 0.8793332 187.5 0.00927639 0.63197463
32 0.8827737 188.5 0.00919315 0.63173014
33 0.8861242 196.3 0.00929397 0.63167292
34 0.8891583 200.0 0.00793337 0.62892664
35 0.8921083 201.0 0.00791309 0.62886426
36 0.8947823 232.7 0.00773257 0.62937304
37 0.8975135 238.8 0.00753182 0.62936450
38 0.9002818 247.0 0.00704949 0.62853974
39 0.9026693 248.0 0.00700537 0.62841527
40 0.9050651 255.5 0.00682846 0.62857363

ID52 - Vol. 6 - Certification Team Practices Page 41

41 0.9072665 262.2 0.00706612 0.62913210
42 0.9093364 263.2 0.00703667 0.62905020
43 0.9114076 270.0 0.00705158 0.62903299
44 0.9133771 291.0 0.00633379 0.62628399
45 0.9151931 295.7 0.00626138 0.62588795
46 0.9169896 307.2 0.00661746 0.62584311
47 0.9187180 319.0 0.00698431 0.62621041
48 0.9203730 333.5 0.00735684 0.62661352
49 0.9219189 334.5 0.00726743 0.62641310
50 0.9233891 342.5 0.00715505 0.62649094

Summary:
Total Scenarios Executed: 50
Total Number of Failures: 4
Total Number of Engineering Changes: 4

Graphical Representations may also be included to put the overall picture in perspective. Figures
4.4.1.1 to 4.4.1.4 represent each of the above measures graphically. The graphs help make
explicit data trends that are hard to see from long lists of numbers.

Figure 4.4.4.1: Graphical Representation of the Reliability

1-

0.9-

0.7

S04.

0.5

OA

0.3

02

0.1

01 1..........

ID52 - Vol. 6 - Certification Team Practices Page 42

Figure 4.4.4.2: Graphical Representation of the MTBF

400

360

10

100

50

0 I

1D52 - Vol. 6 - Certification Team Practices Page 43

Figure 4.4.4.3: Graphical Representation of the Discrimination

0.02
0,018

0.014

V, 0.012

0.01

0.004

0

1D52 - Vol. 6 - Certification Team Practices Page 44

Figure 4.4.4.4: Graphical Representation of the Distance

0.7

OA-

0.3

0.2

0.1,

0.......... I............'"...... I......... I.........

Table 4.4.3: Certification Statistics for Version 1

Sequence Reliability MTBF Discrimination Distance
Number I I

1 1.0 00 00 0.90459634
2 1.0 c0 00 0.90663380

3 F1 0.7621622 163.0 *0 0.88497270
4 0.8216216 174.0 0, 0.74395470
5 0.8572973 214.0 00 0.60730044
6 0.8736360 220.0 00 0.61295286

7 F2 0.7488309 124.4 00 0.67786315
8 Fl 0.7052270 87.0 ** 0.57896791
9 0.7325929 117.0 00 0.58039152

10 Fl 0.6873774 89.5 0, 0.66092 179

ID52 - Vol. 6 - Certification Team Practices Page 45

11 F3 0.6546406 75.6 00 0.72362404
12 0.6737854 82.2 -0 0.71989707
13 0.6944773 85.6 00 0.72074781
14 0.7124546 95.2 0c 0.72374514

15 F2 0.6730047 80.7 00 0.78911525
Summary:

Total Scenarios Executed: 15
Total Number of Failures: 3
Total Number of Engineering Changes: 3

Table 4.4.4: Certification Statistics for Version 2

Sequence Reliability MTBF Discrimination Distance
Number I I I

I F4 0.5000000 15.0 00 0.98381352
2 0.7500000 19.0 00 0.95566751
3 0.8333333 128.8 ,0 0.67827290
4 0.8333333 103.0 00 0.56749205
5 0.8666667 122.0 00 0.42509080

6 F4 0.7627628 66.0 00 0.53881485
7 0.7847490 79.5 00 0.51760079
8 0.8054054 84.5 00 0.51899412
9 0.8265700 86.5 00 0.51132867

10 F4 0.7805166 64.0 00 0.59302440
Summary:

Total Scenarios Executed: 10
Total Number of Failures: 1
Total Number of Engineering Changes: 1

Table 4.4.5: Certification Statistics for Version 3

Sequence Reliability MTBF Discrimination Distance
Number I I I

ID52 - Vol. 6 - Certification Team Practices Page 46

1 1.0 0c 00 0.93185033
2 1.0 *0 c0 0.90208448
3 1.0 00 -0 0.60042497
4 1.0 *0 *0 0.46935659
5 1.0 00 0c 0.28098143
6 1.0 cc c0 0.26613835
7 1.0 00 -0 0.22884672
8 1.0 c0 00 0.23306323
9 1.0 0c c- 0.21545436

10 1.0 c0 1 0 0.19830691

11 1.0 ,, 00 0.17772825
12 1.0 00 W, 0.19061005
13 1.0 00 ,, 0.18447346
14 1.0 00 00 0.18494891
15 1.0 c0 0c 0.18974892
16 1.0 00 00 0.17355669
17 1.0 00 W, 0.17578204
18 1.0 00 c0 0.18049896
19 1.0 00 00 0.18322122
20 1.0 00 00 0.18550743

21 1.0 ,,0 0 0.17021599
22 1.0 00 cc 0.16099319
23 1.0 00 0.01005985 0.14324902
24 1.0 0c 0.00576479 0.12043814
25 1.0 00 0.00600560 0.12399226

Summary:
Total Scenarios Executed: 25
Total Number of Failures: 0
Total Number of Engineering Changes: 0

The interpretation of this data is an important factor in the success of Cleanroom certification.
The data from the entire certification history is important for analyzing the testing process itself.
That is how has the entire experience of uncovering and fixing errors affected the quality of the
code and the representativeness of the sample? The individual version chains help to quantify
the behavior of the actual software product. In these chains, each failure is noted each time it
occurs. Thus a reliability curve that is very flat will indicate that engineering changes are
necessary in order to certify.

Each project is different. They each have their own challenges and analyses. Experimentation
with the methods through the Certification Assistant is an excellent way to gain important
analytical experience with the Markov chain reliability model.

ID52 - Vol. 6 - Certification Team Practices Page 47

4.4.2 Hypothesis Testing

The purpose of hypothesis testing of software P is to determine the number of test cases (sample
size to make the statement that P is at least r% reliable with c% confidence. Table 4.4.2.1
summarizes some example values for r% reliability and c% confidence.

Table 4.4.2.1 Sample Sizes for Hypothesis Testing

Confidence Level
Reliability 90% 95% 99% 99.9%

.90 22 29 44 66

.95 45 59 90 135

.99 230 299 459 688

.999 2302 2995 4603 6905

.9999 23025 29956 46049 69074

4.4.3 The Certification Model (Reliability-Growth Modeling)

The certification model is based on the assumption that the interfail times for software are
exponentially distributed as engineering changes are applied to software. This assumes that
no new failures are introduced when the fault is corrected and that the exponential distribution
is an accurate description of the failure characteristics of the software.

This second assumption is empirically supported by some research done by Adams on nine
large IBM software projects. Mills argued that this data depicts an exponential growth in the
MT"F as bugs are removed from the software.

In order to use the certification model. One collects the interfail times of the software during
a statistical test and plots these items on a graph with the time (which is normally measured
using test case number) as the x coordinate and the interfail value as the y coordinate. A
corrected log least squares curve fit is then applied to the series of points to predict the
location of the next data point.

4.4.4 Bayesian Estimation

Bayesian estimation is a controversial idea which is not generally accepted in the engineering
community. This theory allows the use of "outside knowledge" about the probability of
software failure to be included in the certification results. The method consists of choosing
values for parameters a and b based on knowledge about the probability of failure and then
executing n successful test cases. The parameter a contributes negatively (the knowledge that
makes the software worse) and parameter b contributes positively (the knowledge that makes

ID52 - Vol. 6 - Certification Team Practices Page 48

the software better). The formula: a/n+a+b is then used to calculate the probability of failure
for the software.

ID52 - Vol. 6 - Certification Team Practices Page 49

